Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Photochem Photobiol ; 10: 100107, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1611878

ABSTRACT

We performed an in-depth analysis of the virucidal effect of discrete wavelengths: UV-C (278 nm), UV-B (308 nm), UV-A (366 nm) and violet (405 nm) on SARS-CoV-2. By using a highly infectious titer of SARS-CoV-2 we observed that the violet light-dose resulting in a 2-log viral inactivation is only 104 times less efficient than UV-C light. Moreover, by qPCR (quantitative Polymerase chain reaction) and fluorescence in situ hybridization (FISH) approach we verified that the viral titer typically found in the sputum of COVID-19 patients can be completely inactivated by the long UV-wavelengths corresponding to UV-A and UV-B solar irradiation. The comparison of the UV action spectrum on SARS-CoV-2 to previous results obtained on other pathogens suggests that RNA viruses might be particularly sensitive to long UV wavelengths. Our data extend previous results showing that SARS-CoV-2 is highly susceptible to UV light and offer an explanation to the reduced incidence of SARS-CoV-2 infection seen in the summer season.

2.
BMC Infect Dis ; 21(1): 594, 2021 Jun 22.
Article in English | MEDLINE | ID: covidwho-1277920

ABSTRACT

BACKGROUND: UltraViolet-C (UV-C) lamps may be used to supplement current hospital cleaning and disinfection of surfaces contaminated by SARS-CoV-2. Our aim is to provide some practical indications for the correct use of UV-C lamps. METHODS: We studied three UV-C lamps, measuring their spatial irradiance and emission over time. We quantify the error that is committed by calculating the irradiation time based exclusively on the technical data of the lamps or by making direct irradiance measurements. Finally, we tested specific dosimeters for UV-C. RESULTS: Our results show that the spatial emission of UV-C lamps is strongly dependent on the power of the lamps and on the design of their reflectors. Only by optimizing the positioning and calculating the exposure time correctly, is it possible to dispense the dose necessary to obtain SARS-CoV-2 inactivation. In the absence of suitable equipment for measuring irradiance, the calculated irradiation time can be underestimated. We therefore consider it precautionary to increase the calculated times by at least 20%. CONCLUSION: To use UV-C lamps effectively, it is necessary to follow a few simple precepts when choosing, positioning and verifying the lamps. In the absence of instruments dedicated to direct verification of irradiance, photochromic UV-C dosimeters may represent a useful tool for easily verifying that a proper UV-C dose has been delivered.


Subject(s)
COVID-19/prevention & control , Disinfection/methods , SARS-CoV-2/drug effects , Ultraviolet Rays , Hospitals , Humans , Virus Inactivation/radiation effects
3.
Sci Rep ; 11(1): 6260, 2021 03 18.
Article in English | MEDLINE | ID: covidwho-1142456

ABSTRACT

The potential virucidal effects of UV-C irradiation on SARS-CoV-2 were experimentally evaluated for different illumination doses and virus concentrations (1000, 5, 0.05 MOI). At a virus density comparable to that observed in SARS-CoV-2 infection, an UV-C dose of just 3.7 mJ/cm2 was sufficient to achieve a more than 3-log inactivation without any sign of viral replication. Moreover, a complete inactivation at all viral concentrations was observed with 16.9 mJ/cm2. These results could explain the epidemiological trends of COVID-19 and are important for the development of novel sterilizing methods to contain SARS-CoV-2 infection.


Subject(s)
SARS-CoV-2/radiation effects , Ultraviolet Rays , Virus Inactivation , Virus Replication/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL